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Review Article

Introduction
Conrad H Waddington’s early 1940s definition of epigenetics 

states that the term’s original definition encompasses all molecular 
pathways that affect how a genotype expresses itself on the way 
to a particular phenotype, with epigenetics serving as the interface 
between genotype and phenotype.1 The current definition of epi-
genetics, which is universally accepted among biologists, is the 
in-depth examination of heritable alterations in gene activity dur-
ing mitosis and/or meiosis, however, without ever changing the 
sequence of the DNA.2 For instance, a wide range of progressive 
epigenetic changes ensures the development of a healthy individ-
ual.3–5 The evidence that critical epigenetic reprogramming events 
occur in mammals while germ cells are forming as well as dur-
ing the early stages of embryogenesis reinforces this.6,7 In plain 
language, epigenetics is the study of how environmental factors, 
such as diet, specific nutrients, poverty, ultraviolet radiation, etc., 
affect how an individual’s genes function.8,9 Contrary to genetic al-
terations, which may have enduring, irreversible effects on health 
and the onset of diseases, epigenetic modifications are changeable 
without altering the sequence of DNA but can affect how our bod-
ies interpret DNA sequences.10,11 Even though every cell in an 
organism has essentially the same DNA, there are distinct differ-
ences in terms of cell types and their functions. These alterations 
in gene expression, which are predominantly caused by qualitative 
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Abstract
The traditional definition of epigenetics encompasses all molecular pathways that affect how a genotype expresses itself on the 
way to a particular phenotype, with epigenetics serving as the interface between genotype and phenotype. Unlike genetic chang-
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early epigenetic settings throughout development, affecting the offspring’s long-term health as well as their predisposition for 
different diseases. The epigenetic settings of germ cell development are influenced by environmental factors, which can result 
in transgenerational epigenetic effects. Therefore, in this article, we essentially provide a summary of the present level of under-
standing concerning the function of epigenetics regarding critical facets of human health, including in embryonic development 
and adulthood, with a particular emphasis on explaining the underlying diverse epigenetic mechanisms that regulate the onset of 
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state of epigenetic therapies, which might be put to use in the treatment of a range of human diseases.
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and quantitative variations, are mediated by cis- and trans-acting 
factors, including transcription factors (TFs) that affect cellular 
differentiation and development and are under epigenetic con-
trol.12,13 It is generally believed that epigenetic mechanisms like 
DNA methylation and chromatin modifications (including differ-
ent RNA-mediated processes, e.g., noncoding RNAs), primarily 
affect the expression of genes, specifically transcription as well 
as at post-transcriptional, translational, and/or post-translational 
levels; since those processes are all regulated by epigenetics, they 
cause cell-specific gene expression patterns and have an impact on 
the overall development of the organism.14–18

History of epigenetics
As stated above, the British developmental biologist, embryolo-
gist, and geneticist Conrad H Waddington, who worked at Cam-
bridge University, first introduced the phrase epigenetics in 1942.1 
Waddington did not, however, know at the time that genes existed 
or that they played a hereditary role. In accordance with this, a 
second theory concerning the existence of epigenetics, advanced 
by David L Nanney in 1958, pushed the field’s definition and im-
proved its comprehension to where it is today.19 Nanney postulated 
the presence of two systems that regulate cells. While one system 
primarily depends on DNA-template-driven transcription, which is 
genetic, the other system envisions a complementary system with 
vastly different operating principles that primarily regulates which 
data is represented in a specific cell based on epigenetic regulation. 
However, the conception of epigenetics by these two pioneering 
researchers ran counter to Muller’s initial findings in 1930 from 
his seminal research examining deletions, inversions, transloca-
tions, and in Drosophila melanogaster chromosomes exposed to 
radiation which firmly indicated that not having any additional ge-
netic alterations like mutational changes in the DNA or epigenetic 
changes; importantly, the mere gene positioning inside the genome 
could alone alter the expression of the gene.20

Hannah, in 1951, was able to correctly interpret the variega-
tion effect (juxtaposition of euchromatin and heterochromatin) as 
observed by Muller and support the crucial role of epigenetics in 
gene expression by claiming that specific genes in the genomic 
regions that are euchromatic were moved to the heterochromatic 
regions of the genome, altering the way the genes behaved in their 
previous location.21 Interestingly, long before the term epigenetics 
was coined and recognized, Darwin and Kant’s theories indicated 
that the surroundings played a significant part in strictly regulating 
the phenotypic changes of an organism, resulting in the idea of the 
concept of evolution.22

The Mendel’s principles, which were developed in 1865, so-
lidified the ideas of heredity and genetics.23 Isolation of the DNA 
molecule in 1869 by Friedrich Miescher, a Swiss scientist who 
wanted to study the chemistry of cells, also contributed.24 Finally, 
the DNA double helix structure was determined by Watson and 
Crick in 1959, about a century later.25 These findings collectively 
supported and validated the original epigenetics theory, according 
to which genetics can then provide the framework for epigenetics 
to explain how environmental factors affect the genome.

Importantly, Waddington created his iconic representation of 
the epigenetic landscape in 1957, demonstrating how a cell, in 
analogy to a ball, might take distinct routes based on the surface 
unevenness that effectively mirrors environmental factors inside 
and outside of cells.26 This idea essentially demonstrates how a 
cell changes throughout development from an undifferentiated 
state to one of several distinct, individual, differentiated cell fates, 

which are controlled by epigenetic mechanisms (Fig. 1).
Furthermore, several research teams discovered that effective 

embryogenesis required the union of male and female gamete ge-
nomes. This resulted in determining imprinted genes, which are 
controlled in a sex-specific manner as a result of genomic imprint-
ing potentiated by epigenetic processes, and resulted in the variable 
level of gene expression based on the parent from whom it came.27 
X-chromosome inactivation (XCI) was first observed in mam-
mals in 1961 and is a mammalian paradigm of transgenerational 
epigenetic transmission that silences genes only on the paternally 
inherited X chromosome; as such, it is a notable instance of epi-
genetics-induced imprinting on the genome.28,29 Both Prader-Willi 
and the Angelman syndromes, which map to human chromosome 
15q11-q13, include alterations of the imprinted genes’ expression 
caused by the methylation of DNA.30

The characterization of the nucleosome’s structure by Kornberg 
and Thomas in 1974 also marked a significant advance in the study 
of epigenetics.31 The identification of the double helix structure in 
DNA also led to the identification of other significant chromatin 
alterations, like DNA methylation (5-methylcytosine, 5mC) and 
post-translational histone modifications (PTMs). Indeed, methyla-
tion, acetylation, phosphorylation, ubiquitylation, and sumoylation 
of histones, and adenosine diphosphate (ADP) histone ribosylation 
were documented between 1962 and 1977. DNA methylation was 
first identified in 1965.32,33 It is important to note that Jenuwein 
and Allis’ seminal work at the University of Virginia, where his 
team discovered the histone code in 2001, has made it easier to 
decipher the biological significance of these PTMs.34

It is also crucial to remember that not all epigenetic alterations 
as described in the literature are heritable and that some of them 
might only be transient. The fact that monozygotic twins have sim-
ilar epigenomes in their early years of life yet display significant 
changes in their epigenomes as they become older is proof that the 
epigenome is metastable and exhibits temporal variability.1,35–38

Table 1 contains a timeline of important events in the develop-
ment of epigenetics.1,16,21,26,28,31,34,39–58

Fundamental knowledge of the epigenetic control of gene 
expression
Over the years, the control of gene expression by epigenetic means 
has become recognized as a significant essential route in the patho-
genesis of numerous diseases.3,59–62 Also, there has been an explo-
sion of data revealing the epigenetic mechanisms regulating health 
and disease.

DNA methylation
A number of physiological and pathological processes are con-
trolled by methylation of DNA, and aberrant methylation of DNA 
is often linked to the emergence of many diseases as well as to 
adaptations like the concept of Developmental Origin of Health 
and Disease (DOHaD).1,10,12,16,17,38,42,43,63

DNA methylation affects DNA repair processes
Genomic regions abundant in patterns made up of a cytosine nu-
cleotide coming before a guanine nucleotide are referred to as 
cytosine-phosphate-guanine (CpG) islands.64 The most common 
way to influence biological processes through DNA methylation 
is dynamic modulation concerning the CpG islands’ methylation 
state in any particular gene’s regulatory region. The specific nu-
cleotide and location of its methylation varies between types, de-
spite the fact that methylation of the DNA is thought to exist in 
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every organism.65 In humans, methylation of a cytosine nucleotide 
occurs when it is located directly 5′ to a guanine nucleotide. De-
spite the fact that both methylated and unmethylated cytosines can 
spontaneously deaminate under physiological conditions, DNA 
repair mechanisms accurately repair unmethylated cytosine’s con-
version to uracil, maintaining the CpG dinucleotide in the island. 
However, when methylated cytosine is deaminated, thymine is 
produced, which DNA repair mechanisms cannot recognize, and 
cannot repair.66 As a result, over time these defects may reduce 
the frequency of the human genome’s CpG dinucleotides, disrupt-
ing the islands constituted of CpGs and causing adverse effects on 
health, ultimately resulting in diseases.67

DNA methylation regulates gene transcription, controlling 
health and disease
When a key regulatory region of the gene such as a promoter con-
taining CpG islands is hypermethylated, the chromatin is often 
compacted or closed, resulting in transcriptional inactivation of 
relevant genes. Due to the compacted chromatin, TFs can be in-
hibited from attaching to the DNA. Moreover, the proteins binding 
methyl-CpGs have a greater affinity for the promoter sequence, as 
opposed to a specific TF, when methylation occurs in a promoter 
region containing cytosine.68 The binding proteins of methyl-CpG 
also collaborate with other proteins to form a complex that has 
histone deacetylase (HDAC) activity.69 This complex then causes 
euchromatin (an open chromatin structure) to adopt a closed con-
formation, becoming heterochromatin, which prevents TFs from 
accessing the promoter sequence and repressing transcription of 
that gene. By contrast, CpG island hypomethylation causes a eu-
chromatic state, which is frequently associated with the transcrip-

tional activation of genes.70–72 Additionally, CpG island hyper-
methylation occurs as part of regular physiological processes, such 
as XCI in females.28 Also, while repeating sequences like satellites 
and long interspersed nuclear elements, Arthrobacter luteus infec-
tion, etc., contribute to a variety of physiological processes, they 
can cause chromosomal instability that can be avoided by hyper-
methylation of repetitive DNA elements.73

Key roles of DNA methyltransferases in the DNA methylation of 
the gene
DNA methyltransferases (DNMTs) assist in modifying cytosine 
in organisms, producing 5mC. Five DNMTs have been identified 
within the genome to date, namely DNMT-(1, 2), DNMT-(3a, 3b), 
and DNMT3L. The canonical DNA methyltransferases 1, 3a, and 
3b directly add methyl groups to cytosine by catalysis.16,17,42,50–52 
However, DNMT2 lacks the large N-terminal domains found in 
the DNMT-(1, 2, 3) families that is otherwise essential for methyl-
ating DNA and/or RNA.

Chromatin modification
Gene regulation and expression depend on chromatin structure 
and are accomplished by bringing in various chromatin-modifying 
complexes.74–76 For instance, the euchromatin state of embryonic 
stem cells is an illustration of the particular chromatin organization, 
which enables accessibility for the expression of all genes globally 
and makes it easier to reprogram a cell to become pluripotent.77

Diverse types of PTMs regulate gene expression
Nucleosomes, or DNA with 146 base pairs surrounding an octam-

Fig. 1. Synopsis of basic epigenetic mechanisms governing the transformation of a cell type from an undifferentiated to a differentiated state. A few 
significant post-translational histone modifications produced by effector enzymes including chromatin remodelers, histone acetyl transferases (HATs), his-
tone methyl transferases (HMTs), and DNA methyltransferases (DNMTs) are shown. Cell-specific transcription factors (TFs) work in tandem with epigenetic 
machinery to steer the course of an undifferentiated cell type during a transcriptional pause, such as the euchromatin state, in order to attain biological 
functions characteristic of a differentiated cell type. lncRNA, long noncoding RNA.
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er of histone proteins made up of two molecules of each histone 
(H2A, H2B, H3, and H4), make up about 99% of the genome. 
Using data from mass spectrometry and specific antibodies, Kou-
zarides et al.78 were able to provide a thorough discussion of a 

variety of chromatin alterations, such as acetylation, phosphoryla-
tion, lysine/arginine methylation, deimination, ubiquitylation, su-
moylation, and ribosylation of the ADP; each of these alters the 
DNA-histone interactions in nucleosomes. The complex network 

Table 1.  Timeline of significant events in the history of epigenetics

Year Key finding

1759 Theory of epigenesis by CF Wolff. According to the epigenesis theory, structures that have not yet (pre-) developed emerge  
throughout development.39

1802 JB Lamarck proposed that the environment might directly and heritably alter phenotype.40

1879 Cytologist W Flemming coined the term chromatin to refer to the structure of the stainable cell nucleus, later referred to as  
chromosomes, which were visible when cells divided.41

1898 Discovery of a nucleotide known as tuberculinic acid that is not recognized as a prerequisite to the identification of DNA  
methylation.42

1942 The term epigenetics was coined to clarify how genes interact with the surroundings to develop an organism’s physical  
characteristics.1

1951 First isolation of 5-methylcytosine from nucleic acids.43

1957C Waddington creates a model of the epigenetic landscape to demonstrate how cells make decisions during biological  
development.26

1961 For the first time, genes associated with X-chromosome inactivation were found in female mouse embryos.28

1962 Discovery of histone methylation.16

1964 Discovery of histone acetylation.44

1965 Discovery of DNA methylation.42

1974 First structural resolution of a nucleosome.45

1975 Identification of histone phosphorylation; DNA methylation proposed as a process for the embryonic silencing of the 
X-chromosome; The idea that DNA methylation may regulate gene expression was proposed by Holliday and Riggs.28,46,47

1977 Discovery of histone ubiquitylation; Franklin and Zweidler used acid-urea-Triton X polyacrylamide gel electrophoresis to  
extract histone variants from human tissues for the first time.48,49

1981 The first proof that DNA methylation is responsible for X-chromosome silencing.28

1982 Discovery of bromodomain and prions.31,50

1985 DNA methylation takes place on particular DNA regions known as CpG islands.42

1988 Cloning of the first enzyme found in mammals that catalyzes the addition of a methyl moiety to DNA, or DNA  
methyltransferase, or DNMT.51

1992 SIRT1, discovery of a NAD+-dependent deacetylase; A technique was developed to determine which particular DNA strands 
contain a methylated cytosine, opening the door to perform DNA methylation genome sequencing; To examine the  
connection between disease and methylation of DNA, the initial transgenic mouse model was developed.44,47,51

1995 The first conclusive study to show that decreased methylation of DNA resulted in the onset of cancers.52

1996 Discovery of histone acetyl transferase and histone deacetylase.44

1997 Discovery of RNA interference and DNMT1.51

1999 The first demonstration in mammals is that epigenetic alterations may be propagated through 
generations; Colorectal cancer was linked to DNA methylation of CpG islands.53,54

2001 The first chromodomain-containing protein, heterochromatin protein 1, was reported to explain position effect variegation 
in Drosophila, a phenomenon that occurs when an active gene is translocated into the heterochromatin environment, 
resulting in gene suppression; A particular subclass of ncRNA called miRNA was discovered in vertebrates.21,34,55

2004 Identification of first histone demethylase.56

2011 Modification of histone proteins could be another method of epigenetic inheritance.57

2014 Most current definitions of epigenetics, according to Felsenfeld et al., never make a distinction between circumstances as the 
modifications may be passed down during cell division, aiding in the maintenance of a particular gene expression pattern, and  
in circumstances where the changes are merely a component of the transcribing apparatus.58

CpG, cytosine-phosphate-guanine; DNMT, DNA methyltransferase; miRNA, microRNA; ncRNA, noncoding RNA; NAD, nicotinamide adenine dinucleotide; SIRT1, silent mating type 
information regulation 2 homolog 1.
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of distinct histone residues that are methylated, demethylated, 
acetylated, phosphorylated, dephosphorylated, and even methylat-
ed and acetylated between each other gives rise to a histone code.34

Acetylation of histones usually occurs at lysine residues that 
have positive charges, loosening the bond between DNA and his-
tones and allowing transcription by opening up the chromatin.79 
For example, transcriptional activation is associated with acetyla-
tion of H3’s lysines 9 and 27, which are designated as H3K9ac and 
H3K27ac, respectively.80,81 Methylation of a histone, by contrast, 
is more complex since it may entail adding 1–2 methyl groups to 
an arginine and 1–3 methyl groups to a lysine while maintaining 
the charge of the histone protein.82 As an illustration, lysine 27 
trimethylation on H3, designated as H3K27me3, results in inhibi-
tion of transcription while lysine 4 methylation on H3, designated 
as H3K4me, is linked to gene activation.83,84 Moreover, histone 
phosphorylation adds a negative phosphate group to the histone 
tail; however, its function is largely unknown apart from its role 
in response to DNA damage and subsequent repair caused by H2A 
histone family member X phosphorylation.47 Allis’s group has 
shown that the H2AX variant is also phosphorylated on tyrosine 
(Y) 142 and that this modification is controlled in a way that de-
pends on DNA damage.34 Moreover, histone phosphorylation has 
also been shown to be connected with transcription regulation. For 
instance, regulation of transcription of epidermal growth-factor re-
sponsive genes is linked to serine phosphorylation at the 10 and 28 
residues of H3 and H2B’s serine 32.85 In addition, a large ubiquitin 
molecule can be inserted into the lysine residues on histones. Ex-
amples of ubiquitylated histones are H2AK119ub, which is associ-
ated with gene silencing, and H2BK123ub, which is connected to 
transcription activation.86,87 Also, PTMs on histone proteins can be 
conjugated to small ubiquitin-like modifiers that dynamically alter 
chromatin structure and gene expression. Even though it was origi-
nally believed to only suppress gene transcription, recent evidence 
seems to point to diverse roles for histone sumoylation in cotran-
scription mechanisms, namely chromatin reorganization, exten-
sion of transcription, and avoiding cryptic transcription.88,89 Also, 
ADP-ribosylation of histones has been demonstrated in studies to 
be associated with histone acetylation, methylation, and phospho-
rylation, and to have important roles in DNA repair, replication, 
transcription, and cell proliferation.90–92

Energy-dependent chromatin remodeling complexes alter chro-
matin function
Cells are equipped with additional highly regulated epigenetic 
mechanisms that are mediated by chromatin remodeling complex-
es that use adenosine triphosphate (ATP) for their activity.75,76 The 
majority of evidence for the four families of chromatin remodeling 
complexes that use ATP-SWItch/sucrose nonfermentable, imita-
tion SWI/Sucrose Non-Fermentable, IN080, and chromodomain-
helicase-DNA binding has come from their structural similarities. 
Chromatin remodelers can catalyze a wide variety of chromatin 
structural changes, such as nucleosome sliding, which causes his-
tone variant exchange.93 As an illustration, it has been demonstrat-
ed that the ATP-reliant chromatin remodeling complexes’ nucleo-
some remodeling factor SWI2/Sucrose Non-Fermentable 2-related 
1 chromatin remodeling complex catalyzes the transfer of the H2A 
variant H2AZ and the histone octamer sliding along the DNA, re-
spectively, to promote transcription.94

Noncoding RNAs control human health and disease
The largest number of transcripts in the human genome that are 
highly transcribed are noncoding RNAs (ncRNAs), which repre-

sent the greatest majority of transcripts.95 Three distinct ncRNAs 
form [microRNAs (miRNAs), long noncoding RNAs (lncRNAs), 
and circular RNAs (circRNAs)] have a significant impact on hu-
man health as well as the development of diseases.96,97

MiRNAs control chromatin activity by interacting with the 
methylation process of DNA and histone alteration
Small ncRNAs known as miRNAs, which range in length from 18 
to 25 nucleotides, are becoming increasingly recognized as one of 
the main epigenetic regulators in eukaryotes.98 The global miRNA 
database, miRbase, currently lists references for more than 2,500 
miRNAs. MiRNAs produced by Drosha and Dicer in two sequen-
tial cleavage steps from defective hairpin conformations are seen 
in precursors of lengthy ncRNAs or intronic segments of DNA of 
coding or noncoding genes.99 Although the precise mechanism by 
which miRNAs downregulate protein translation is still unknown, 
it may include degradation of mRNA, inhibition of translation, or 
a blending of these processes together. Furthermore, epigenetic 
changes such as methylation of DNA, modification of RNA, and 
modification of histones can affect how miRNAs are expressed.100 
Also, an miRNA-epigenetic feedback loop that promotes recipro-
cal communication can be established by miRNAs targeting epige-
netic modifier enzymes involved in epigenetic modifications. For 
instance, miR-9 is a notable miRNA that is regulated by epigenetic 
mechanisms. Its regulation has been linked to hypermethylation 
of a CpG island across the miR-9 locus. Many cancers, includ-
ing solid tumors in the breast, colon, and other organs, along with 
hematological malignancies like acute lymphoblastic leukemia, 
exhibit miR-9 hypermethylation.101,102

The structure and function of chromatin are regulated by lncR-
NAs
RNAs that exceed 200 nucleotides in length but do not encode 
proteins are known as lncRNA transcripts. Given the multitude of 
ways that lncRNAs might work, one way to group them involves 
the way that they operate, i.e. as a signal, decoy, guide, scaffold, 
enhancer, or sponge lncRNAs.103

Signal lncRNAs
In general, signal lncRNAs respond to particular physiologi-
cal and environmental cues to modulate downstream genes and 
exhibit expression according to cell type, either on their own or 
in conjunction with specific TFs, PTMs, and histone-modifying 
enzymes.103–105 For instance, XCI is assisted by the well-known 
lncRNA X-inactive specific transcript in a biological process by 
which one of the two X-chromosomes in female cells becomes 
inactivated to balance the genes’ expressions in mammalian males 
and females.106 Additionally, signal lncRNAs have the ability to 
control chromatin dynamics because their negative changes can 
balance out positively charged histone tails, causing chromatin to 
decompact (go from heterochromatin to euchromatin) and potenti-
ating gene activation.107

Decoy lncRNAs
LncRNAs have the potential to function as a kind of chromatin 
decoy by, among other things, preventing some chromatin modi-
fiers from interacting with the promoters of target genes.108 For 
instance, the lncRNA lncPRESS1 sequesters the HDAC sirtuin 
6, a deacetylase that causes gene repression, away from the pro-
moters of several pluripotency genes, allowing human embryonic 
stem cells to retain their pluripotency and become transcriptionally 
poised towards cellular factors.109
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Guide lncRNAs
Guide lncRNAs direct regulatory proteins to their target sites in 
subcellular locations where they attach to them to form ribonu-
cleoprotein molecules, causing expression or silencing of the tar-
get genomic regions.95 This could entail chromatin-modifying en-
zymes being recruited, which then alter the state of the chromatin 
by forming intricate complexes among RNAs, RNA-DNA hybrid 
molecules, and effector proteins-RNA-DNA. As an illustration, 
the polycomb repressor complex 2 attaches to the lncRNA HOX 
transcript antisense RNA 5′-domain, which then triggers DNA 
methylation and gene silencing. On the other hand, the 3′-domain 
interacts with the complex of lysine demethylase/RE1 silencing 
transcription factor and causes the removal of methylation marks 
from the gene, which activates transcription.110

Scaffold lncRNAs
Scaffold lncRNAs have a range of binding sites that allow them 
to form functional complexes with additional proteins that medi-
ate transcriptional activation or repression. A well-known example 
of a scaffold lncRNA is the telomeric repeat-containing RNA, an 
element of telomeric heterochromatin that interacts with telomer-
ase RNA to suppress telomerase activity.95,111 As a result, lncRNA 
telomeric repeat-containing RNA-expressing cells are accelerated 
toward an early stage of senescence.

Enhancer lncRNAs
Enhancer lncRNAs function in cis to control target gene expres-
sion by bringing remote enhancers close to the promoter region 
containing the basal transcriptional machinery by binding, as a 
result of facilitated long-distance communication between the en-
hancer and promoter.112 An enhancer lncRNA called lncRNA en-
hances endothelial nitric oxide synthase (eNOS) expression, which 
increases endothelial nitric oxide synthase (commonly known as 
eNOS) level, can aid in RNA polymerase II recruitment to the 
eNOS promoter, which augments the transcription of eNOS pre-
cursor RNA.113

Sponge lncRNAs
There is growing evidence that lncRNAs can perform as miRNA 
sponges and face off against protein-coding transcripts for miRNA 
binding. Because sponge lncRNAs and miRNAs have complemen-
tary sequences, they can bind to each other and restrict the amount 
of miRNAs that transcription machinery can access to control the 
transcription of target genes.114 For instance, the sponge lncRNA 
phosphatase 1 nuclear targeting subunit has seven sequences that 
are complementary to miRNA-205, decreasing the capacity of 
miRNA-205 to attach and repress the mRNAs of the zinc finger 
E-box-binding homeobox 1 and zinc finger E-box-binding home-
obox 2.115

CircRNAs
Single-stranded nucleotide molecules with covalent encapsulation 
that lack 3′ poly A tails or 5′ caps, unlike mRNAs, are known as 
circRNAs.95,103 The size of the spliced circle molecule might range 
from less than 100 nucleotides to more than 4 kb. Similar to lncR-
NAs, sponging miRNAs represent one process whereby circRNAs 
regulate post-transcriptional gene expression in the cytoplasm 
of a cell. However, very few research studies have revealed that 
circRNAs function by means of interacting with proteins. In ad-
dition to the several other potential methods of action, circRNAs 
can recruit TFs, chromatin-modifying enzymes, and enzymes that 

modify DNA or histones to alter gene expression, either activating 
or inhibiting it.116

Importance of epigenetics in embryonic development and 
adulthood
Despite the long-held belief that an individual’s phenotype is pri-
marily determined by means of their parents’ genetic code, more 
acceptance is coming forth for the idea that genetic code-deter-
mined phenotypes can be further modulated by a variety of epi-
genomes that arise during development as a result of epigenetic 
plasticity established during the initial stages of embryogenesis.117 
The intrinsic uterine surroundings, wherein the embryo, fetus, and 
neonate develop over time, are susceptible to the early epigenetic 
settings throughout development, affecting the long-term health of 
the offspring as well as their propensity for various disorders.118 
In fact, environmental factors that affect the epigenetic setting of 
germ cell development may cause some of these modifications to 
be passed down through generations. They all work together to 
explain DOHaD.119–122

Epigenetic processes direct embryo development
The process of rapid cell proliferation causing embryo growth be-
gins with the formation of a single-cell embryo (zygote) produced 
by the fertilization of an ovum by a sperm.123 The cells that are 
produced initially all possess the unique ability known as totipo-
tency, which allows them to develop into every kind of special-
ized cell found in the embryo, membranes outside the embryo, and 
the placenta. While an embryo’s cell population grows, it gradu-
ally starts to differentiate, giving rise to distinct cell populations 
(pluripotency to multipotency).124 Each of these groups exhibits an 
increasingly narrower variety of developmental results, primarily 
mediated through a range of epigenetic mechanisms, which when 
combined give rise to permanent gene expression patterns that are 
unique to a particular lineage.125 At about the 5th-day mark after 
fertilization the human embryo, which has between 50 and 150 
cells and is made up of the trophectoderm and an inner cell mass, 
transforms into a blastocyst.126 Trophectoderm cells have a very 
limited capacity to differentiate because they can only become the 
various cell types seen in the placenta. As a result, they are regard-
ed as multipotent cells. On the other hand, the inner cell mass has 
a rich collection of pluripotent stem cells that are embryonic in na-
ture, able to develop into a variety of genuine fetal cell types since 
they have unconstrained developmental potential. Implantation is 
the process of the blastocyst embedding into the endometrial lining 
of the uterus, which generally occurs in week 2 of development.127 
Typically, the human blastocyst implants in the endometrium. Ear-
ly implantation begins with the blastocyst adhering to the uterine 
wall, which is known as apposition. Next, the blastocyst attaches 
to the receptive endometrium, which is known as adhesion, and 
finally, the attached blastocyst invades the endometrial stroma by 
crossing through the endometrial epithelial basement membrane, a 
process known as invasion.128

Impact of epigenetic changes on preimplantation embryo devel-
opment
While early literature focused solely on the substrates and culture 
conditions required for embryonic development, particularly in the 
context of in vitro fertilization, more recent findings suggest that 
the epigenome can be changed by the surrounding environment, 
which can then influence developmental competence by affecting 
embryo metabolism, etc.129 Aside from the metabolic effect, epige-
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netic reprogramming and modification provide critical molecular 
functions during embryonic development, primarily by regulating 
expression of genes that determine cell fate by influencing cel-
lular differentiation and stabilizing monoallelic gene expression 
at critical loci.120 CpG methylation has had its function studied 
in epigenetic reprogramming among numerous species, and new 
research is unraveling the collaborative roles among CpG meth-
ylation, chromatin changes, and ncRNAs when altering the early 
epigenetic landscape during embryonic development.130 Zygotic 
genome activation (ZGA) occurs after zygote formation in initial 
embryonic growth and is another important aspect of preimplan-
tation embryonic development, which is controlled by epigenetic 
processes.130 Histone alterations not only help to establish totipo-
tency but are also important in ZGA. During ZGA, gene activation 
markers like trimethylated H3 lysine 4 are more prevalent among 
humans, whereas gene inactivation markers like H3 lysine 27 
(H3K27me3) are less prevalent.131

Embryo implantation is dependent on epigenetic regulation of 
the endometrium
The endometrium and the embryo that is implanting communicate 
with one another throughout the highly regulated process of im-
plantation; this is necessary for establishing and maintaining the 
pregnancy and is highly reliant on endometrial receptivity.127 For 
instance, the endometrium’s regenerative capacity is extraordinary 
in that it thickens to a depth of 5–7 mm within a cycle, up from 
0.5–1 mm following menstruation.132 As a result, the endometrium 
necessitates the active engagement of mechanisms like angiogen-
esis, as controlled by TFs along with epigenetic processes such as 
methylation of DNA and chromatin modifications.133

Adult development is linked to epigenetic processes
Recent studies appear to support the idea that epigenetics re-
lated to age is more significant than genetics in deciding which 
body genes express themselves, which in turn influences a per-
son’s vulnerability to specific diseases.5 For instance, age-related 
changes in methylation of DNA patterns have been noted. In addi-
tion, variations in histone modifications with aging can affect the 
genomic stability needed to maintain physiologically appropriate 
processes. Recent studies have also revealed that human classical 
CD14+CD16 monocytes age regularly, with H3K27me3 declin-
ing and H3K27me1 increasing; this is yet another example of how 
epigenetics has a major impact on controlling the physiological 
fitness of health as people age.134

Methods of analyzing chromatin’s DNA methylation patterns
DNA methylation involves the addition of a methyl group to a cer-
tain base pair by chemical means. Conversion based on bisulfite, 
enrichment based on affinity, and together with approaches based 
on restriction enzymes can all be used to evaluate DNA methyla-
tion across the entire genome. The term whole-genome bisulfite 
sequencing refers to the process that entails sequencing the en-
tire DNA sample following bisulfite treatment. In contrast, re-
duced representation of bisulfite sequencing enriches between 
1% and 5% of the genome with rich CpG density using restric-
tion enzymes, bisulfite conversion, and size selection.135 Enriched 
genomic interest regions by targeted sequencing utilizing special 
bisulfite padlock probes or hybridization capture probes such 
as TruSeq Methyl Capture EPIC made by Illumina Corporation 
(San Diego, CA, USA) is a more versatile but also more expen-
sive method. Additionally, the Pacific Biosciences (Menlo Park, 

CA, USA) platform has developed long-read sequencing, which 
enables direct detection of DNA base modifications like cytosine 
during sequencing.135 Moreover, nanopore sequencing is another 
innovative sequencing method that has the ability to distinguish 
between methylation and unmethylated cytosines. Affinity enrich-
ment, on the other hand, uses a binding protein against methylcy-
tosine or antibodies directed against 5 mC followed by sequencing 
as a substitute to converting DNA methylation status by bisulfite 
conversion.135,136

Chromatin immunoprecipitation (ChIP) methods to examine 
DNA-protein interactions
ChIP is a widely used method to examine DNA-protein interac-
tions, including histone modifications. This technique makes use 
of antibodies with a particular affinity for binding to desired his-
tone modifications. ChIP, subsequent to sequencing, in the method 
known as ChIP-seq, is the principal approach for evaluating the 
epigenome’s overall state of histone marks.92,137,138 ChIP-exo is an 
improvement over ChIP-seq that enables binding site resolution to 
be increased to a single base from hundreds of base pairs. Although 
more expensive, ChIP-nexus is essentially an enhanced edition of 
ChIP-exo that uses an intramolecular ligation approach for library 
preparation that is more effective. ChIP mentation is a method that 
immediately tags ChIP fragments with Tn5 transposase and is then 
followed by sequencing; this approach lowers the cost and input 
requirements of regular ChIP-sequencing. Also, cleavage under 
targets and release using a nuclease is a different approach for his-
tone profiling that has lately grown in favor because it requires less 
sample DNA input. In contrast, cleavage under targets and tag-
mentation with Tn5 (a fusion protein of protein A and transposase) 
involves loading with sequencing adapters to address some of the 
drawbacks of cleavage under targets and release using a nuclease. 
The latter typically results in DNA loss caused by micrococcal nu-
clease digestion.

Methods of analyzing chromatin structural patterns
Genomic regions vary regarding nucleosome occupancy and the 
DNA’s accessibility to proteins. To quantify these traits across the 
genome, numerous techniques have been devised. Sequencing tar-
geting DNase I hypersensitive sites and deep sequencing using mi-
crococcal nuclease digestion were the first of these techniques to 
be established.139 Another comparable test that considers genomic 
DNA within a euchromatic state specifically vulnerable to sonica-
tion-assisted shearing is the identification of regulatory elements 
by using formaldehyde subsequent to sequencing. Additionally, 
the transposase-accessible chromatin using sequencing (ATAC-
seq) technique is the most recent method to examine chromatin ac-
cessibility.140 By using tagmentation, ATAC-seq is the fastest and 
highest sensitivity among all existing techniques and significantly 
decreases the amount of input DNA required.

Chromatin conformation capture methods to investigate long-
distance genomic sequence interactions
Moreover, across the genome, regulatory elements engage in long-
distance interactions. Different crosslinking and ligation-based ap-
proaches with differing degrees of coverage and specificity have 
been developed to detect and characterize them across the entire 
genome. For instance, chromatin conformation capture is an inno-
vative approach that relies on ligating and crosslinking physically 
interconnected chromosomal areas.141 Reversal of the crosslink-
ing produces fragments of linear DNA. The characterization of 
interconnecting domains from various chromosomes can then be 
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carried out downstream using a variety of techniques. Hi-C is a 
whole-genome implementation of chromatin conformation cap-
ture, which exploits next-generation sequencing for high-through-
put measurement among every chromatin interaction. In addition, 
techniques like HiChIP, which combines Hi-C with ChIP, and 
analysis of chromatin interactions via a method known as paired-
end tag sequencing are also used to explore the long-distance inter-
actions of specific chromatin regions.142

Multiomics assays to investigate epigenetic alterations
Recent years have observed the growth of a number of multiom-
ics assays for the simultaneous characterization of numerous epi-
genomic levels across the genome.143 For instance, measurement 
of both DNA methylation and chromatin accessibility can be per-
formed simultaneously in the same sample using a technique known 
as nucleosome occupancy methylome sequencing. EpiMethylTag is 
a different technique that combines ATAC-seq or ChIP-seq, known 
as M-ATAC or M-ChIP, respectively with bisulfite conversion. 
This also enables the simultaneous analysis looking at the changes 
in methylation patterns along with histone modifications on identi-
cal DNA molecules. Another approach is known as ATAC-Me re-
sembling EpiMethylTag and it combines ATAC-seq and bisulfite 
sequencing. In addition, researchers have recently developed high-
resolution epigenomic methods at the single-cell level by utilizing 
breakthroughs in single-cell sequencing methods.144,145

Epigenetic pathways control the emergence of human diseases
The role epigenetics plays in human illnesses has increased re-
cently, and academics from all around the world are becoming in-
creasingly interested in this area of research. Abnormal epigenetic 
alterations are linked to a variety of diseases, such as oncogenesis, 
neural problems, type 2 diabetes, cardiovascular diseases, infec-
tious diseases, etc.

The link between epigenetics and cancer
Oncological outcomes are significantly influenced by epigenetic 
changes.146–148 One way to inactivate several tumor suppressor 
functions is to hypermethylate tumor suppressor gene promoter re-
gions.149 Besides, additional genes participating in the vast array of 
essential physiological properties have also shown hypermethyla-
tion, which leads to oncogenesis. It is interesting to note that ncR-
NAs have been widely researched for their function in the epige-
netic regulation of breast cancer.150 Due to CpG hypermethylation 
in miRNA genes or deregulation of miRNA biosynthetic process-
es, miRNAs aberrantly control genes in cancer.151 Additionally, the 
activation of glioblastoma multiforme (GBM)-related genes and 
oncogenesis have been linked to the extent of arginine methylation 
of histone that is protein arginine methyltransferase-dependent at 
particular genomic locations.152 Additionally, an extensive DNA 
hypomethylation across the genome has been identified by whole-
genome analysis as the most notable and early known alteration 
in DNA methylation patterns of neoplastic cells.153 It is likely 
DNA demethylation may have a role in aneuploidy and genomic 
instability, two prominent characteristics of cancer.154 DNA meth-
ylation loss may result in transcriptional activation, allowing gene 
expression of repeated sequences, transposable elements, and can-
cer-causing genes.153–155 Also, the histone acetylation pattern is 
altered in GBM cells and has been linked to tumor aggressiveness, 
as shown by the findings that HDAC1, 2, and 3 are critical for the 
etiology of gliomas.156

Taken together, the onset and prognosis of cancer, which was 

once thought to be a genetic disease, is now understood to require 
both genetic changes and anomalies in the epigenome. Current de-
velopment in the rapidly progressing research in the field of can-
cer epigenetics has shown extensive dysregulation of every part 
of the cancer’s epigenetic machinery.151,157 However, this article’s 
breadth does not allow for a thorough description of the role of 
epigenetics in oncogenesis.

Epigenetic changes cause neurological disorders
The fundamental premise that the basis of neurogenesis depends 
on the epigenetic mechanisms governing developmental outcomes 
in a healthy individual strongly supports the deep effects of their 
deregulation on the etiology of many neural diseases, such as Alz-
heimer’s disease (AD) and Parkinson’s disease (PD), etc.158–160 
For instance, DNA methylation in multiple genes linked to AD 
such as amyloid precursor protein, ankirin, and apolipoprotein E, 
is changed.161 Moreover, in AD patients’ brains as well as AD mice 
with transgenes, histone acetylation levels were found to be signif-
icantly lower.162,163 Particularly significant is that postmortem ex-
amination of brain tissue from AD patients revealed H3 acetylation 
enrichment along lysine 27 in genomic regions regulating tubulin-
associated unit (tau) and pathology dependent on β-amyloid for-
mation, inducing concurrent hyperexpression among the important 
genes found there; namely, these are precursor protein for amyloid, 
presenilin 1 and 2, and protein tau associated with microtubules 
that regulate tau and β–amyloid formation in the brain.164

On the other hand, hypomethylation has been found through-
out the genome and is not confined to the gene that encodes 
α-synuclein, leading to hyperexpression and protein buildup in 
Lewy bodies in PD neurons.165 Additionally, a recent study looked 
at the PTMs of genes in the substantia nigra of two PD patients, 
which showed that the synuclein alpha promoter region is associ-
ated with two substantial histone methylations, namely H3K4me3 
and H3K27me3. M3k4me3 is increased and enhances transcription 
initiation in PD patients’ brains. H3K27me3, on the other hand, is 
related to the snuffing out of the SNCA gene’s expression.166 More-
over, epigenetic modifications (primarily aberrant histone modifi-
cations) have been seen in Huntington’s disease.167,168 Complex 
gene-environment interactions are believed to cause the onset and 
development of multiple sclerosis, a persistent inflammatory state 
having an impact on the brain, even though epigenome modifi-
cations may also be involved.169 Finally, human and animal hip-
pocampus specimens with epilepsy have shown evidence of global 
hypermethylation, which alters processes including neuron devel-
opment and remodeling.165

How epigenetics participates in the development of CVDs
Epigenetic changes have been associated with CVDs, such as 
atherosclerosis and hypertension.170–174 DNA methylation has 
frequently been seen as a significant etiologic factor in disorders 
of the cardiovascular system.171 However, despite their biological 
importance in other diseases, there is limited evidence to support 
the activities of DNA methylating and demethylating enzymes in 
CVDs, to date. Nonetheless, there has been evidence of large-scale 
DNA hypomethylation in some atherosclerotic lesions while DNA 
hypermethylation is found in genes that protect against agathero-
sclerosis.175 While DNA methylation might not be enough by itself 
to influence CVD development per se, covalent changes on his-
tone tails collaborate with subtle DNA modifications to influence 
chromatin structure and gene expression that have been implicated 
in CVD progression. For instance, HDAC5 and HDAC9 from the 
HDAC Class IIa family offer protection against hypertrophic re-
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modeling. HDAC5 and HDAC9 binding inhibits Mef2C, a TF that 
activates prohypertrophy genes.176 Thus, the dysregulated expres-
sion of HDACs can lead to a range of heart abnormalities, such as 
dilated cardiomyopathy, cardiac hypertrophy, atherosclerosis, and 
stroke.177

The connection between T2D and chromatin changes
The initial indications of T2D epigenetic regulation were only 
identified 10 years ago, when it was demonstrated that various 
DNA methylation patterns were present in particular genes or 
areas of the genomes in diabetic mouse and human adipose and 
muscle tissues.178–181 Furthermore, T2D peripheral blood mono-
nuclear cells exhibit lysine 4 H3 methylation in the chromosomal 
segment regulating the expression of nuclear factor kappa-B, a TF 
that modulates inflammatory reactions.182 Additionally, a signifi-
cant role in epigenetics exists in the emergence of T2DM micro- 
and macrovascular problems.183 Importantly, insulin’s metabolic 
function and impaired insulin release from the pancreatic beta cells 
are two key factors that contribute to developing T2D.184 The DNA 
methylation of several genes, including IRS1, PPARG, KCNQ1, 
and TCF7L2, which are implicated in the effects of insulin in lo-
cations like the skeletal muscle, fat tissue, and liver, have been 
shown to be altered.185 Also, HDAC7 upregulation has been linked 
to a reduction in glucose-stimulated insulin production in human 
pancreatic cells of people with T2D.186 Additionally, acetylation of 
the FOXO1 gene, which controls PDX1, a critical TF that activates 
the insulin gene, affects the development of insulin-producing beta 
cells in the pancreas and glucose homeostasis.187,188

The connection between infection and epigenetics
Interactions between hosts and pathogens are greatly influenced by 
epigenetic factors.189–191 These serve to increase the host genome’s 
accessibility so that a virus can alter histones unique to a host. The 
host, instead, might methylate the DNA to inactivate the expres-
sion of the viral genome integrated into the host genome, thereby 
inhibiting viral replication. DNA methylation controls the immune 
reaction of the host to bacterial infections in addition to its func-
tion in viral infection pathogenesis.192 Practically all viruses ex-
ploit host epigenetic reprogramming, which is a crucial component 
of their host immune evasion routes.193 Also, pathogen-associated 
molecular patterns found in microorganisms (bacteria, fungi, vi-
ruses, and protozoa) that are engaged in the detection of pathogens 
may change the host immune cell’s epigenetic environment. It has 
been shown by Ramendra et al.194 that the strong pathogen-asso-
ciated molecular patterns of 1,3-D-glucan from fungus were able 
to modify the epigenetic landscape and chromatin accessibility 
of monocytes.195 On the other hand, the HBV-encoded oncogene 
X protein of the hepatitis B virus can alter host miRNA patterns, 
which then modifies the viral burden and strengthens persistence.

Current state of epigenetic therapeutics for treating human 
disease
Typically, epigenetic drugs or “epidrugs” are pharmacological sub-
stances that treat DNA and histone PTMs that are abnormal in a 
diseased condition. Inhibitors of DNA methyltransferase, histone 
methyltransferase, histone demethylase, histone acetyltransferase, 
and histone deacetylase are the five classes into which epigenetic 
medications are typically divided.196 Many of these different types 
of inhibitors have been reviewed elsewhere.197,198 Despite the fact 
that the majority of these inhibitors have shown efficacy when 
used alone, there are powerful complementary actions of inhibi-

tors of histone modification and DNA methylation, and such is 
projected to considerably boost the potential efficacy.199

Development of therapeutics based on epigenome editing
Since epigenetics research has advanced over the years, it is now 
possible to use epigenome editing to treat a variety of disorders. 
Technologies for altering the genome, like clustered regulatory 
interspaced short palindromic repeat (CRISPR)-associated protein 
(Cas) (CRISPR-Cas), transcription activator-like effector (TALE) 
nuclease, zinc finger nuclease, and others are rapidly developing 
and may be adapted for altering epigenomes.200,201 Early investiga-
tions used zinc finger and TALE domains, which were initially uti-
lized to develop enzymes that can edit the epigenome with selectiv-
ity for a target sequence. They can combine the binding domain for 
DNA that finds the intended sequence with the enzyme-containing 
EpiEffector molecule that consists of a group of enzymes that alter 
DNA and histone proteins in an epigenetic manner but they do not 
attach to particular DNA sequences.202 In addition to the TALE 
and zinc finger systems, CRISPR systems developed employing 
Cas proteins which are dead (which fail to break DNA since the 
endonuclease activity of the Cas protein has been lost) still have 
DNA binding capability that is programmatic.[200.201] Despite 
being in its early stages, this technology has already shown its po-
tential in a number of experiments.

Challenges and future directions
Despite the importance of comprehending how epigenetic mecha-
nisms operate in health and disease to develop novel therapeutic 
approaches in the treatment of human diseases, there are numerous 
difficulties associated with instigating targeted epigenetic modi-
fications that aim to restore the epigenetic landscape to a normal 
physiological state from a diseased state. Hence, the synthesis of 
drugs targeting epigenetic modifications may be severely hampered 
by these issues, which must be resolved. For instance, because 
epigenetic alterations occur at numerous locations throughout the 
genome, it is difficult to target particular genes without impacting 
others. For epigenetic drugs to be effective, gene-specific targeting 
and reducing off-target effects are essential.198 Also, toxicity is a 
common feature of epigenetic drugs, which restricts the dose and 
time they can be administered. For the development of safer and 
more efficient treatments, measures to improve drug selectivity 
and lower side effects are crucial. Epigenetic drugs that target cer-
tain epigenomic-modifying enzymes have significant side effects 
on the patient because they impede all of the enzyme’s actions, 
which affects the complete genome. However, compared to the ir-
reversible DNA sequence changes brought on by genomic editing, 
the reversible effects of epigenome editing provide a benefit.

It is imperative to take into account a number of important fac-
tors, including the unwanted genomic mutations brought on by 
the epigenome editing treatment, particularly with CRISPR/dead 
Cas-mediated epigenome editing, a thorough understanding of the 
nuclear structure, and how it changes during undifferentiated and 
differentiated cell states, cell types, and method of administration. 
For example, epigenome editing in differentiated cells is not only 
challenging but also less effective therapeutically than in undiffer-
entiated stem and progenitor cells, making it unsustainable.200,201 
Moreover, understanding and overcoming resistance pathways are 
necessary for the long-term efficacy of any epigenetic therapy. 
Also, to increase therapeutic selectivity and lower toxicity, re-
searchers are currently investigating cutting-edge drug delivery 
technologies, such as nanoparticles and targeted approaches.203 

https://doi.org/10.14218/ERHM.2023.00086


DOI: 10.14218/ERHM.2023.00086  |  Volume 00 Issue 00, Month Year10

Chakrabarti S.K. and Chattopadhyay D.: Epigenetics: Health and diseasesExplor Res Hypothesis Med

Moreover, notwithstanding the challenges in using assay systems 
to study epigenetics in clinical settings, there are ongoing efforts 
that focus on translating these basic research methodologies, with a 
focus on the possibilities of microfluidic tools, including CRISPR-
based detection systems, and epigenetic biomarkers employed as 
biosensors with particular reference to point-of-care use in future-
generation diagnostic platforms.204 Lastly, thanks to the develop-
ment of technologies for large-scale epigenome mapping and drug 
sensitivity testing, together with drug screening of a particular cell 
populace from patients identified using these technologies, it is 
now possible to provide a customized treatment for each patient 
while minimizing side effects.

Conclusions
The advanced developments in epigenetics have led to the crea-
tion of a number of technologies that have improved our under-
standing of the biological functions of epigenetic regulation. This 
includes more precisely interpreting the vast amounts of data from 
epigenomic mapping. Therefore, drugs that target abnormal DNA 
methylation, histone acetylation, or other epigenetic processes may 
be effective in treating a range of disorders. By lessening the toxic-
ity of epigenetic drugs, epigenome-editing can also help with bet-
ter therapeutic approaches. The effectiveness of cancer treatment 
can be improved by combining epidrugs with other treatments like 
immunotherapy or traditional chemotherapy.
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